gtag('config', 'UA-125043120-1');

Quel buontempone di Mr. Thomson… e la sua lampada

Quel buontempone di Mr. Thomson… e la sua lampada - Entanglement e sincronicità. Edizioni PensareDiverso

Privacy Policy
Vai ai contenuti

Menu principale:

Quel buontempone di Mr. Thomson… e la sua lampada

QUEL BUONTEMPONE DI MR. THOMSON… E LA SUA LAMPADA

Con uno sforzo di fantasia potremmo immaginare Mr. Thomson come un tipo metodico e  un po’ pignolo, relegato  all’ultima funzione nel reparto contabilità di una mega-industria; una specie di ragionier Fantozzi, per intenderci. Un giorno, stanco di essere sottovalutato, propone ai colleghi, tutti più quotati di lui, il seguente problema.



Prendiamo una lampada capace di  commutare velocissimamente nella condizione acceso-spento, e colleghiamola a un computer quantistico in grado di inviare alla lampada segnali di commutazione senza limiti di velocità.
L’esperimento si svolgerà nel tempo di UN MINUTO (sessanta secondi).
La lampadina sarà inizialmente accesa, e il computer commuterà la sua condizione più volte, ogni volta riducendo a metà il tempo rimanente. Cioè, la prima volta commuterà dopo 30 secondi, la seconda dopo la metà di 30 cioè  15 secondi, la terza dopo la metà di 15 cioè  7,5 secondi e così via. Ecco l’esempio.

         





La domanda è questa:

Al tempo zero, cioè un minuto dopo l’inizio dell’esperimento, la lampadina sarà spenta o accesa?


IL PROBLEMA NON E’ BANALE
In effetti questo problema non è stato posto da un qualsiasi  ragionier Fantozzi, ma da James. Thomson,  (1921-1984), un filosofo britannico, nell’ambito dei suoi studi su quelli che lui chiamò supercompiti o supertask.
Come al solito, dedichiamo questo problemino a quanti sostengono che la scienza è l’unico metodo garantito per la soluzione di ogni problema, e criticano l’orientamento metafisico di questa pagina; da questi vorremmo dunque una FORMULA matematica che indicasse chiaramente se la lampada sarà spenta o accesa.
Qualcuno dirà che non serve giungere a tanto, e il problema si può risolvere semplicemente con il buonsenso. GIUSTO. Peccato però che non esista nulla di più metafisico del buonsenso. Il buonsenso è un artificio dialettico  a cui si ricorre in mancanza di regole precise, cioè di una norma di comportamento testata e certificata (scientifica).
Non abbiamo niente contro la scienza, quando non diventa dogmatica ed escludente. Al nostro livello  medio la scienza classica funziona benissimo. Purtroppo, a livello  macroscopico funziona molto meno bene ed è necessario ricorrere alla relatività einsteiniana. A livello subatomico, poi, non funziona affatto tant’è che la fisica quantistica ne sconvolge tutte le certezze
Oltre al livello medio, microscopico e macroscopico, quanti altri livelli esistono? La teoria delle stringhe predice un universo  a nove o dieci dimensioni, dove solo  le prime quattro (tempo e spazio)  possono essere percepite al nostro livello medio. Cosa c’è nelle altre?
Forse sono dimensioni così poco percettibili perché non sono basate sulla materia, ma hanno contenuti  puramente psichici? In effetti, l’entanglemente certifica l’esistenza, tra le particelle elementari,  di un livello comunicativo tutto avulso dalla materia e dai suoi vincoli.

Il problema della lampada di Thompson mette in gioco i SUPERCOMPITI.
In filosofia, un supercompito è una successione composta da un insieme numerabile di operazioni che avvengono sequenzialmente in un intervallo finito di tempo.
James F. Thomson negava con forza che i supercompiti siano possibili e propose il paradosso della lampada a sostegno della sua convinzione. Il suo paradosso  è  probabilmente diventato il più famoso esempio di un supercompito dai tempi di Zenone.

Per saperne di più
Cenacolo Jung-Pauli ti consiglia


Edizioni PensareDiverso  2018
ISBN 9788894299175. Pagine   350. Formato 17x24.  Illustrato
La prima parte (Le intuizioni) tratta la realtà illusoria e l’esistenza di un livello di coscienza trascendente la materia. La seconda (Le conferme) descrive il cammino della fisica quantistica dall’esperimento della doppia fenditura di Thomas Young, alla conferma dell’Entanglement. La terza (Le prospettive) descrive le teorie di David Bohm sul potenziale quantico e sull’universo olografico...   DI PIU'
DOVE LO TROVI
Disponibile in formato stampato o ebook su Amazon, IBS e maggiori  negozi online
Dunque, la soluzione quale è?

Ho fornito un aiutino citando Zenone, un filosofo greco che già discusse questo problema.
L'origine dell'interesse per i supertask è di solito attribuita al filosofo greco  Zenone di Elea. (489-431 a.C.). Zenone affermava che il movimento era impossibile, sulla base di questo  ragionamento:
Supponiamo che il nostro protagonista, chiamiamolo Achille, voglia andare da A a B.
Per farlo, egli deve attraversare metà della distanza da A a B, cioè immaginando  il percorso come A-x-B, Achille deve prima di tutto andare da A a x, e poi da x a B.
A   >x>   B
Ma per andare da A a x  Achille deve prima percorrere la metà di questo percorso, cioè deve andare da A a y e poi a x.
A  >y>   x>   B
Per andare da qualsiasi punto medio del tratto  da A a B, Achille deve attraversare metà di questa distanza, e così via.
Per quante volte esegua uno di questi compiti di "movimento" ce ne sarà sempre un altro da fare prima di arrivare a B. Di conseguenza, secondo Zenone, il movimento (cioè percorrere una distanza diversa da zero in un tempo finito) è un supercompito. Zenone sostiene che i supercompiti non sono possibili (come si può completare questa successione se per ogni movimento fatto ne appare ancora un altro?). Ne consegue che il movimento è impossibile.
Zenone stesso ha anche discusso la teoria da lui chiamata di "Achille e la tartaruga". Supponiamo che Achille sia il corridore più veloce e si muova ad una velocità di 1 metro al secondo. Achille insegue una tartaruga, un animale noto per la sua lentezza, che si muove a 10 centimetri al secondo.  Tuttavia, la tartaruga parte con un vantaggio di 90 centimetri.
Sembrerebbe evidente che, dopo poco, Achille raggiunge e supera la tartaruga. Zenone però sostiene che questo non è il caso. Egli afferma che Achille, prima di superare la tartaruga,  deve inevitabilmente raggiungere il punto da cui la tartaruga è partita.
Però, nel tempo impiegato per arrivarci, la tartaruga si è già spostata in un altro punto.
Tutto ciò si ripete all’infinito: ogni volta che Achille raggiunge il punto in cui si trovava la tartaruga, questa ha già raggiunto un nuovo punto che Achille dovrà a sua volta raggiungere.
Il suo primo tratto sarà di 0,9 metri, continuerà con ulteriori 0,09 metri, poi 0,009 metri, e così via, all'infinito. Queste distanze continuano a ridursi, ma non diventeranno mai zero, e l'inseguimento della tartaruga da parte di Achille diventa un supercompito senza fine. Questo particolare paradosso ha attirato una grande quantità di commenti; molti affermano che trova una scappatoia nel senso comune.

Per saperne di più
Cenacolo Jung-Pauli ti consiglia


Edizioni PensareDiverso  2017
ISBN 9788894299106. Pagine   204x. Formato 17x24.  Illustrato
“Turbato da un presentimento, rinuncia a partire e si salva la vita”. Quante volte abbiamo letto una notizia come questa dopo un disastro aereo? Altri presentimenti, spesso più comuni, sono legati alla vita quotidiana di ciascuno di noi. Così pure episodi di telepatia o altre sensazioni dell’anima costellano l’esistenza degli uomini....DI PIU'
DOVE LO TROVI
Disponibile in formato stampato o ebook su Amazon, IBS e nei maggiori negozi online
La soluzione di Thomson
Per quanto riguarda la Lampada di Thomson, continuando a dividere per due i secondi rimanenti non si arriva mai a zero, ma si prosegue all’infinito. Non sembra esserci alcun modo non arbitrario per rispondere a questa domanda.
Thomson dice che la lampada non può essere accesa, perché non c'è mai stato un momento in cui lo era ma successivamente non sia stata di nuovo spenta. E allo stesso modo non può essere spenta, perché non c'è mai stato un momento in cui lo era ma successivamente non sia stata di nuovo riaccesa.
Col ragionamento di Thomson la lampada è né accesa né spenta, ma nei fatti dovrebbe essere accesa o spenta,  il che è una contraddizione non risolvibile.

Per saperne di più
Cenacolo Jung-Pauli ti consiglia



Edizioni PensareDiverso  2017
ISBN 9788894299127. Pagine   100  Formato 12X16,5.
Fin dai primi sviluppi del pensiero l’umanità ha ritenuto che le coincidenze significative fossero segni con i quali un livello superiore, filosofico o divino, cercava di interloquire con gli uomini. Negli ultimi tre secoli tutto ciò era stato cancellato dalla pratica scientifica, e le più straordinarie coincidenze erano considerate come frutti del caso; si giungeva persino a deridere chi avesse voluto vedervi segnali utili alla conduzione della propria vita. Così pure i presentimenti, di cui ciascuno fa esperienza..    DI PIU'
DOVE LO TROVI
Disponibile in formato stampato o ebook su Amazon, IBS e maggiori  negozi online

Collegati
RealTime
con il nostro Cenacolo Jung-Pauli


Iscriviti alle nostre news



Torna ai contenuti | Torna al menu